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Gerrymandering, the deliberate manipulation of electoral district boundaries for political advantage, is a

persistent issue in U.S. redistricting cycles. In this work, we introduce and analyze Votemandering, a strategic
blend of gerrymandering and targeted political campaigning devised to gain more seats by circumventing

fairness measures. Votemandering leverages accurate demographic and socio-political data, bolstered by

advancements in technology and data analytics, to influence voter decisions in pursuit of subtle gerrymandering

strategies. We formulate votemandering as a Mixed Integer Program (MIP) that performs fairness-constrained

gerrymandering over multiple election rounds. To combat votemandering, we present a computationally

efficient heuristic for creating and testing district maps that more robustly preserve voter preferences. We

analyze the influence of various redistricting constraints and parameters on votemandering efficacy. We

explore the interconnectedness of gerrymandering, substantial campaign budgets, and strategic campaigning,

illustrating their collective potential to generate biased electoral maps. A case study of Wisconsin State Senate

redistricting substantiates our findings on real data, demonstrating how major parties can secure additional

seats through votemandering. Our findings underscore the practical implications of these manipulations,

stressing the need for informed policy and regulation to safeguard democratic processes.
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1 INTRODUCTION
Partisan gerrymandering is the manipulation of voting district lines for political gain. There is nu-

merous evidence of gerrymandering in the US electoral history, giving unfair political advantage to

various parties in power (Bickerstaff et al. 2020). In an effort to detect and quantify gerrymandering,

political scientists have devised various fairness measures, some of which incorporate historical

voting data. If a proposed district plan has a fairness measure outside of a typical range, or, more

robustly, is an outlier with respect to a fairness measure over a sample of feasible plans, this anomaly

offers evidence of partisan gerrymandering. However, federal courts have refrained from endorsing

proposed fairness measures as gerrymandering litmus tests, indicating a need for further research

on the robustness and trade-offs of such tests (Rucho v. Common Cause 2019).

In addition to gerrymandering, political parties seek to enhance their political representation

through huge campaign budgets (Evers-Hillstrom 2021, Horncastle 2020). Although campaigning

alone cannot change the party inclinations of voters, it supports the Get Out The Vote (GOTV)

cause, increasing voter turnout (Imai and Strauss 2011, Karp et al. 2008). Recent GOTV campaigns

carefully target specific audiences for maximum impact, leveraging advanced machine learning

algorithms that use voter data (collected through geographical surveys and the available telemetric

data) to deliver information about the political inclination of the audience (Zarouali et al. 2020).

Once the targets are clear, personalized campaigns are delivered through direct messages or via

social media advertisements. Such campaign efforts have been used in both the 2016 and 2020

U.S. presidential elections, where clear evidence of the effectiveness of the advertisements as well

as research scrutinizing the implications of presenting the social choice surfaced (Brodnax and

Sapiezynski 2022, Liberini et al. 2020). The implications of such precise campaign efforts become

critical, as historical election data (influenced by the campaigns) are often used to judge the fairness

of proposed maps. A question of interest is then studying how smart campaign strategies can

simultaneously affect immediate elections and future redistricting, and help in securing even higher

political representation.

This paper aims to investigate the robustness of fairness measures to strategic campaigning and

traditional gerrymandering, which we term votemandering. Votemandering is based on the idea

that a party can strategically campaign in an election to alter the voting data and then draw a new

district plan that appears fair for a fixed fairness measure, but gives them an unfair advantage in the

next election. The focus is on identifying patterns of selective and disproportionate amendments to

the representation of social choice through voting, to circumvent fairness measures for redistricting.

This manipulation can be critical, particularly when slight deviations in election data can lead to

significantly different fairness measure evaluations. On this background, the paper seeks to address

the following research questions:

� How vulnerable are popular fairness measures to votemandering?

� How might voter turnout levels and political geography exacerbate or thwart votemander-

ing?

� Can careful combinations of fairness measures and legal constraints promote district plans

that are more robust to votemandering?

These questions delve into both social choice theory and practical public policy considerations.

A significant concern arises when technological advancements enable greater access to detailed

data on voters’ preferences and increase the capacity to influence decisions, thus allowing strategic

actors to target specific communities in ways that undermine fairness and equity.

We next present a brief description of the problem: Consider two election rounds with a redistrict-

ing cycle falling in between. The majority party in the state legislature, referred to as the "majority

party," campaigns in the first election, winning the maximum number of seats while simultaneously
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ensuring they can draw a desired district plan for the second election, which appears fair. Fairness
is measured by a metric that uses past election data, such as the e�ciency gap (EG), which is
in�uenced by campaigning. Assuming complete information about the opponent party's Get Out
The Vote (GOTV) campaign, the goal of the majority party is to maximize the number of seats won
in both rounds. We refer to this as votemandering and formulate an optimization framework that
identi�es the best campaign strategies with the combined objective of securing maximum wins in
both rounds and drawing a desired map that remains valid for many years. Motivated by practical
and often legal constraints on redistricting in the US, we also analyze the special case of imposing
proximity constraints for the proposed maps, i.e., making the least changes to the original plan
while proposing a new plan, calling itlocal votemandering. Through this research, we aim to shed
light on the unreliability in the process of redistricting (and detecting gerrymandering), and further
point at measures that ensure more robust maps in general.
Key takeaways from this work include:

(1) We demonstrate that fairness measures can be susceptible to data manipulation, leading
to an indirect form of gerrymandering called votemandering. Therefore, the quality of a
fairness measure can also be de�ned by its robustness against strategic amendments to the
vote-share data. We formally model this phenomenon and discuss the case of the e�ciency
gap.

(2) We show the fragility of district maps concerning votemandering and establish su�cient
conditions for a party to bene�t from it. We show how campaign budgets and access to
opponents' campaign information facilitate; high voter turnout and stricter compactness
bounds curtail; and voter clustering patterns have little e�ect on votemandering.

(3) We lay the groundwork for creating and evaluating district plans that strongly preserve
social choice, providing computationally e�cient votemandering solutions. Our work is
applicable to real-world data, as demonstrated by the case studies.

The remainder of the paper is structured as follows. Section 2 summarizes literature from
various disciplines that connect methodologically or philosophically. Section 3 formally de�nes
votemandering, expounding the model and methods. Section 4 proves the e�cacy and computability
of votemandering speci�c to the e�ciency gap and further explores its sensitivity to state-speci�c
factors such as voter distribution and nonpartisan redistricting constraints. Section 5 de�nes and
analyzes local votemandering, a variation with the constraint that the new district plan is close to
the original. Section 6 applies votemandering to the case of state senate redistricting in Wisconsin,
demonstrating votemandering strategies for both major parties. Finally, Section 7 concludes and
outlines directions for future work.

2 RELATED LITERATURE

This paper connects to a rich body of work from the perspectives of social choice, game theory,
optimization, and statistics.

Social Choice Theory.Social choice theory studies and evaluates the translation of individual
preferences or votes to collective societal decisions (Sen 1986). In our work, we examine the impact
of strategic campaigning on political redistricting, which may be easily translated to a form of
strategic voting aimed at manipulating social choice. The pure form of strategic voting has been
studied for decades, although the focus has been more on various voting mechanisms and their
evaluation using strategy-proofness, Pareto e�ciency, independence of irrelevant alternatives, etc
(Lackner and Skowron 2018, Myatt 2007). As famously shown by Gibbard (1973) and Satterthwaite
(1975), no voting system for more than two players is strategy-proof. Bartholdi et al. (1989) came
up with a voting rule where it is NP-complete for manipulative voters to perform strategic voting,
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and also noted that many voting rules including the plurality rule can be manipulated with only
polynomial computational e�ort. As we see within our framework, �nding optimal strategies for
votemandering is hard, but good solutions can be achieved with little computational e�ort.

Manipulations within Plurality Voting.Within the domain of plurality voting, such problems
have also been studied from a computational theory point of view, while making a few abstractions
on the redistricting part. Cohen-Zemach et al. (2018) study the problem of gerrymandering over
graphs and show that the problem of dividing a social network into connected components is
NP-complete, and Ito et al. (2021) build over their settings. Eiben et al. (2020), Lewenberg et al.
(2017) have studied another variant involving geographic manipulation of borders and location
of districts. In another interesting work by Stewart et al. (2019), information gerrymandering has
been studied where the structure of the in�uence network manipulates the voting outcomes, along
with newly placed zealots. Lev and Lewenberg (2019) study reverse gerrymandering in multi-group
decision-making systems, where agents move across units to maximize their in�uence. The game
of allocating optimal resources for campaigning has been modeled as the classic Colonel Blotto
game, and its complexity, as well as equilibria, are studied (Behnezhad et al. 2018, 2017, Macdonell
and Mastronardi 2015), although without examining the subsequent consequences on redistricting.

Quantifying District Plan Fairness.Lately, with a lot of research being done on �nding ways to
fairly draw the district boundaries and on knowing if a particular map is gerrymandered (Benadè
et al. 2021, Chikina et al. 2017, Landau et al. 2009, Swamy et al. 2023), there has been a growing
interest in de�ning measures to judge the fairness of a map. With multiple redistricting processes
reaching the Supreme Court (Royden and Li 2017), and the latter relying on ongoing research for
the mathematical analysis (Pennsylvania Case 2022), we ask if there are any strategies for fooling
the measures while drawing the politically motivated map boundaries. We study a di�erent form of
strategic voting, where the strategies are implemented by the political parties, although carried out
through a section of voters. In our work, we introduce a new criterion for the evaluation of voting
mechanisms as well as the fairness of the district maps, stressing on the fact that the representation
of social choice through voting is inherently connected to redistricting.

Fooling Fairness Measures.The idea of fooling the measures that are actually designed for achiev-
ing fairness is not new. Starting with Adsul et al. (2010), there has been a lot of work in the �eld of
fair division in algorithmic game theory (Babaio� et al. 2021, Brânzei et al. 2017). By manipulating
the preference data of buyers, the fairness criteria of allocation results in higher utility for the
strategic players. In the �eld of redistricting, our work is philosophically the closest to Brubach et al.
(2020), where the authors study the e�ects of fairness measurements on voting strategies. Using
the outlier detection method, the work heuristically studies the game of strategic voting where
loyal voters alter their votes as directed by their political party. Building on this work and also
addressing some open questions raised, we demonstrate our results using indirect manipulation of
voter turnout through selective campaigning, and we use a popular fairness measure called the
e�ciency gap.

The E�ciency Gap and its Shortcomings.Stephanopoulos and McGhee (2015) introduce thee�-
ciency gap(EG) fairness measure to quantify partisan gerrymandering. EG is a fairly straightforward
measure that computes the di�erence between the wasted votes of two major parties and labels a
map as unfair if a party disproportionately wastes more votes than the other. It has been widely used
because of its simplicity, intuition, and the use of actual voter preference data from the elections
(Gill v Whitford 2018, Missouri Constitution 2022).

With the widespread use of EG, there has also been growing literature on the shortcomings of
EG, typically focusing on its implications and the nature of it being a single-dimensional number
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trying to capture the complex forms of gerrymandering (Bernstein and Duchin 2017, Kean 2018).
In particular, Chambers et al. (2017) have majorly criticized the philosophical implications like
the possible increase in polarization, the problematic ranking of maps and technical implications
like discouragement in proportional representation. Moreover, the EG has also been criticized
for favoring uncompetitive elections and voter suppression (Plener Cover 2018) and volatility in
competitive elections leading to a high number of asymmetric wasted votes as well as for terming 3
to 1 victories as neutral (Bernstein and Duchin 2017). Tam Cho (2017) have observed the problematic
variations of EG implications across states with comparable vote shares; and further have talked
about the limited number of values EG can take for any �xed vote shares. Alexeev and Mixon
(2018) show that sometimes only bizarrely shaped districts satisfy both population balance and
EG constraints. Other philosophical shortcomings include the de�nition and weights of wasted
votes (winner's surplus wasted votes, loser's all votes are weighted the same), incorrect reporting
of the social choice, and bias to the winning party (Barton 2018, Nagle 2019). Numerous updates are
proposed to the current computation of the EG (Barton 2018, Tam Cho 2017), while also criticizing
the implication of wasted votes being improperly biased towards districts with higher voting turnout
(Wallin 2017). We note that the main criticism o�ered by our work is fundamentally independent
of the previous work done on evaluating the EG, and our main focus is on the sensitivity of EG and
its susceptibility to getting fooled in the broader context of votemandering.

3 METHODOLOGY

In this section, we formally discuss the votemandering model and our methodology. Section 3.1
sets the premise with a high-level description of the problem and Section 3.2 formally expounds
the model. Section 3.3 presents votemandering as an optimization problem, applicable to a general
fairness metric using past-election data. Finally, Section 3.4 outlines a two-stage heuristic approach
to solving the votemandering optimization problem and describes the speci�c case of EG.

3.1 High-level Votemandering Model

We begin by de�ning a function,E : D � V ! N, to determine state-wide election winners. This
function maps a district plan,� 2 D , and a set of voter ballots,+ 2 V , to the number of districts
won by party � in the election. The election function,E, represents a speci�c electoral system,
such as single-member districts with �rst-past-the-post voting. Although the voting data,+ , may
be in�uenced by stochastic processes like migration and political dialogue,E is deterministic.

In this framework, partisan gerrymandering involves replacing� with ~� to win more districts,
i.e.,E¹ ~�•+ º ¡ E¹�•+ º. Similarly, election campaigning alters+ to ~+ to secure more districts:
E¹�• ~+ º ¡ E¹�•+ º. Note that election campaigning is generally considered fair within the con�nes
of the Federal Election Campaign Act.

Existing approaches to limit partisan gerrymandering involve calculating a fairness measure,
5 : D � V ! R, and rejecting a district plan� if and only if 5¹�•+ 0º ¡ X. Here,+0 represents
historical voting data, andXis a predetermined threshold. This fairness constraint aims to reduce
the strategic impact of gerrymandering on election outcomes. However, as noted by Brubach et al.
(2020), partisan agents may manipulate voting data in one election to make a future gerrymandered
district plan appear fair. Let� 0 represent the current district plan. The manipulative partisan agent,
party � , attempts to solve the optimization problem:

maximize
~� 2 D • ~+ 2 V

E¹� 0• ~+ º ¸ E¹ ~�•+ 0º

subject to 5¹ ~�• ~+ º � X”
(1)
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Fig. 1. The model highlighting various stages of votemandering

Previous research on elections and redistricting has focused on the e�ects of either~� , ~+ , or 5. In
contrast, this paper investigates the e�cacy of votemandering, which combines gerrymandering
and past or present campaigning, primarily in opposition to a speci�c partisan bias measure, such
as the e�ciency gap (EG). The votemandering framework assumes translation of campaign budgets
to improved voter turnout and an access to other party's budget allocation information, although it
is fairly robust to overcome small uncertainties within the data, as discussed in Section 4.3.

3.2 Model Details and Terminology

Consider two political parties: the (state legislative) majority party,� , and the minority party,� .
Party� is assumed to be in-charge of the redistricting process, in line with requirements of majority
of the states in the US (Center 2022). Suppose parties� and� compete in two rounds of elections
with a redistricting cycle in between. By examining this narrow time window, our model studies
only short-term implications of campaigning, a�ecting the round-1 election and the subsequent
map-drawing process.

Recall the high-level votemandering optimization problem(1). Set the electoral system,E, as
single-member districts with �rst-past-the-post voting. Function5 represents the fairness measure,
such as the EG. We distinguish betweenplanandmap, with the former indicating unit-to-district
assignments and the latter encompassing both a district plan and unit-level voter data.

Figure 1 illustrates the stages of votemandering. In round-1, elections use the existing district
plan,� 0, with voter ballots ~+ resulting from GOTV campaign e�orts. We refer to+0 as theoriginal
dataand ~+ as thenew data. We label¹� 0•+0º the initial map and ¹� 0• ~+ º the campaigned map.
Following round-1, party� creates a new district plan,~� , satisfying fairness constraints using
voter data from the round-1 elections, i.e., the new data. Round-2 elections employ the new plan,
~� , but with the original data,+0. We designate¹ ~�• ~+ º as thevotemandered mapand ¹ ~�•+ 0º as the
target map. The reversion to+0 in round-2 implicitly assumes party� can precisely match party
� 's GOTV budget allocation, negating any increases in voter turnout. We do not model campaign
budget strategies in round-2 to avoid added complexity and, more importantly, to concentrate on
showcasing the ability to manipulate vote shares for generating a desired map while still appearing
to uphold fairness.

Party � 's strategic GOTV campaign in round-1 in�uences their seat-share in both election
rounds: directly through wins in the campaigned map,E¹� 0• ~+ º, and indirectly through wins in
the target map,E¹ ~�•+ 0º. To examine the strategies of the majority party, we �x party� 's budget
allocation across all units and consider party� 's optimization problem(1)of maximizing their total
number of seats. Wins in round-2 are critical because the target map will remain in e�ect until
the next redistricting phase. To cover a complete redistricting cycle (such as a 10-year period in
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U.S. elections), the model can be extended by adjusting the weight of round-2 wins accordingly.
Furthermore, the model accommodates the inclusion of aggregated historical data from multiple
elections by appropriately adjusting the weight attributed to campaign in�uence.

It is essential to emphasize that votemandering is fundamentally di�erent from both strategic
campaigning and gerrymandering due to its interactions between stages. As Section 6 demonstrates,
even modest budget allocations can lead to signi�cant votemandering outcomes, setting it apart
from traditional campaigning by incorporating additional gerrymandering tactics. An example in
Appendix B.1 illustrates the votemandering process.

3.3 Optimization Framework for Votemandering

The votemandering model motivates an optimization framework for exploring potential campaign
and redistricting strategies for party� . Table 4 in Appendix A lists the notation built.

3.3.1 State Characteristics.Let  denote the set of units in a state with= districts. Each district
designates one unit as itscenter. The district assignment of each unit92  in each roundA2 f 1•2g
is represented by the indicator variables

I A
8 9=

(
1• if unit 9is assigned to the district centered at unit8in round A
0• otherwise.

Moreover,I A
88 = 1 if 8 is a district center in roundA. The original district plan,� 0, determines

the values ofI 1
8 9, and allI 2

8 9are decision variables. The following constraints enforce the proper
formation of districts in round-2.

Õ

: 2 

I 2
:8 = 1 882  (2)

Õ

: 2 

I 2
:: = = (3)

Constraint(2)ensures every unit is assigned to some district, and constraint(3)ensures exactly=
units are chosen as district centers.

3.3.2 Budget and Campaigning.Assume complete information about unit populations and the
corresponding party a�liations, i.e., the maximum number of voters for each party in each unit.
The maximum vote counts for party� (� ) are given byE�

8=8C•:(E
�
8=8C•:) in unit : 2  , with total unit

population?: = E�
8=8C•:̧ E�

8=8C•:. LetU 2 »0•1¼denote the fractional baseline voter turnout, assumed
constant across all units. The number of party� votes is the sum ofUE8=8C•:and the votes through
GOTV campaigning in unit: . The vote sharesE8=8C•:andUare �xed for all rounds, and the actual
voting turnout varies depending on campaigning.

Let B � , B � denote the parties' GOTV campaign budgets in terms of the total number of their
supporters they can convince to show up to the polls. Budget allocations in unit: by party%2 f �• � g
may push their actual number of votes above the baseline turnoutUE%8=8C•:, but their total number
of votes cannot exceedE%

8=8C•:. (Hence ifU = 1, then GOTV budget allocations have no e�ect.) This
constraint is implemented by de�ningE�

: as the actual voter turnout for party� in unit : , with
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budget1�
: spent satisfying

E�
: = UE�8=8C•:̧ 1�

: 8: 2  (4)

E�
: = UE�8=8C•:̧ 1�

: 8: 2  (5)

1�
: � ¹ 1 � UºE�

8=8C•: 8: 2  (6)
Õ

: 2 

1: � B � (7)

By assumption, party� 's GOTV campaign allocation, and therefore the valuesE�
: , are known to

party � .

3.3.3 Winning Districts.A party must win more than half of the votes in a district to secure a
win. We use indicator variableŝB1

8 andB̂2
8 and the big-" method for incorporating the wins in

campaigned and target maps respectively

1 � " ¹1 � B̂1
8º �

Õ

: 2 

I 1
8:

�
E�

: � E�
:

�
� " B̂1

8 882  (8)

1 � " ¹1 � B̂2
8º �

Õ

: 2 

I 2
8:

�
E�

8=8C•:� E�
8=8C•:

�
� " B̂2

8 882  (9)

Note that constraints(8)and(9)are both linear:I 1
8: show the unit to district assignments in the

initial map and are given, although variablesE�
: depend on the budget spent. For(9), we know the

values ofE�
8=8C•:• E�

8=8C•:, but variablesI 2
8: depend on the plan that we make for round-2.

3.3.4 The Votemandering MIP.The objective function of(1) is now represented by the sum of
individual district wins in both rounds, i.e.,̂B1

8 andB̂2
8 for every unit8. As described in(1), a fairness

measure constraint5¹ ~�• ~+ º � X is implemented, here precisely represented as a function of the
�rst round variables (updated vote sharesE�

: • E�
: ) as well as the second-round assignment variables

(I 2
8 9). Using our notation, this constraint refers to the fairness constraint on the votemandered

map. Furthermore, the round-2 plan, i.e.,I 2
8 9also needs to satisfy the contiguity, population, and/or

compactness constraints for making districts. We omit these nonpartisan constraints for brevity
and refer the reader to (Swamy et al. 2023) for implementation details.

Finally, givenE�
8=8C•:• E�

8=8C•:, I
1
8 9,E

�
: , B � andX, a mixed-integer program (MIP) formulation of party

� 's optimization problem is

maximizen
1�

:

o

:
•
�
I 2
8:

	
8•:

Õ

82 

B̂1
8¸

Õ

82 

B̂2
8

subject to constraints (2)� (9)•

I 2
8:•B̂

1
8•B̂2

8 2 f 0•1g 88• : 2  •

1�
8 � 0 882  •

5
�
I 2
8:• E�: • E�:

�
� X•

�
I 2
8:

	
satisfy nonpartisan constraints.

(10)

This concludes the description of the optimization problem(10). It is evident that the problem
is computationally challenging due to the complex map-making constraints. For most fairness
constraints, an exact approach to solving this optimization problem is only feasible for very small-
sized grids (on the order of3 � 4).
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3.4 A Sampling-Based Votemandering Heuristic

The complexity of the optimization problem(10)arises from the interplay between the four vote-
mandering stages. Campaigning decisions depend on the �rst and third stages (the initial and
votemandered maps), whereas the objective depends on the second and fourth stages (the cam-
paigned and target maps). Additionally,(10)accounts for the budget, voter turnout, and feasible
map-making constraints, making it di�cult to determine the best direction to improve the objective
and �nd an optimal solution.

To address this complexity, the problem is split into two parts leading to an e�cient heuristic
approach: �nd a promising target map, then increase round-1 wins while maintaining the apparent
fairness of the votemandered map. For a �xed target map de�ned byI 2

8: variables, solving(10)
reduces to �nding an optimal budget allocation1�

: while maintaining feasibility (if possible).
A brute-force method of checking all possible new plans~� 2 D is computationally infeasible due

to the size ofD , i.e., the combinatorial explosion of possible redistricting plans. Instead, sampling is
used to reduce the new plan search space from the setD of all district plans satisfying nonpartisan
redistricting constraints to a smaller pool,P � D . To quickly sample a small but diverse poolP,
we implement the popular recombination Markov chain (DeFord et al. 2021).

The proposed algorithm considers each candidate plan inP according to a priority order, stopping
when a pool-optimal plan,� � , is found. Note that an optimal solution within the pool may not be
unique, and experiments suggest a large number of pool-optimal plans exist. The number of wins
for party � in � � with the original data,E¹ ~�•+ 0º, is a valid lower bound on the global optimum
across all ofD . Although recombination sampling may miss optimal new plans, this two-stage
heuristic is tractable for standard-sized instances and provides practical solutions that e�ectively
utilize votemandering strategies, showing improvements in the number of seats won.

Let P � D be a pool of# candidate new plans, i.e.,P � f � 1• � 2• ” ” ” • �# g. The choice of new
plan � 8 combined with the original voter data+0 determines the number of wins in the target
map,E ¹� 8•+0º. Hence the best new plan for� is determined by �nding, for each plan� 8 2 P, the
maximum number of round-1 wins for� (via spending budgetB � ) such that the votemandered map
with plan � 8 fools the fairness constraint. By decoupling the round-1 and round-2 contributions to
the objective function of(10), this heuristic e�ciently returns the optimal new plan from the pool.
Algorithm 1 provides a high-level description of the heuristic.

Proposition 3.1. Algorithm 1 returns a district plan inP that, when used for the votemandered
and target maps, maximizes the total number of wins for party� across the two election rounds.

Proof. See Appendix B.2. �

The main computational e�ort in Algorithm 1 occurs in Line 10. With the target map fully
determined, the objective of(10)simpli�es to maximize the campaigned map (round-1) wins over
all possible budget allocations

�
1�

:

	
: 2  while maintaining the fairness of the votemandered

map. We call Line 10 thefairness step, because the goal is to maximize wins conditioned on plan� 8
appearing fair as the votemandered map. Henceforward, we use a speci�c fairness measure, the
e�ciency gap (EG), which we formally de�ne in Section 3.4.2. We next expound on the simpli�ed
version of (10) solved with the fairness step speci�c to EG.

3.4.1 Additional Notation.Let I = f �1• ””�=gbe the set of districts�8 in the original plan (round-1)
such that each�8 is a set of units from . Sets�8satisfy�8\ � 9 = ; as no unit can belong to two districts
in any round. Let (+ �

8=8C•�,+
�

8=8C•�) and (+ �
� ,+ �

� ) denote pre-campaigning and post-campaigning votes,
respectively, in district� . Similarly,J = f �1• ””�=g is the set of districts in the new plan (round-2),
with (+ �

8=8C•�,+
�

8=8C•�) and (+ �
� ,+ �

� ) denoting pre and post-campaigning votes in district� 2 J . Let
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ALGORITHM 1: Votemandering Heuristic: Select Optimal Plan from a Pool

1: Input: PoolP = f � 1• � 2• ” ” ” • �# gof candidate new plans
2: SortP in decreasing order ofE ¹� 8•+0º, relabeling from� 1 to � #
3: B1

max  maximum number of round-1 wins for party� by spending campaign budgetB �

4: best_plan  NULL
5: best_obj  �1
6: for all � 8 2 P do
7: if B1

max ¸ E ¹� 8•+0º Ÿ best_obj then
8: break
9: end if

10: obj  solve (10) withI 2
8: variables �xed to encode� 8, returning �1 if infeasible

11: if obj ¡ best_obj then
12: best_plan  � 8
13: best_obj  obj
14: end if
15: end for
16: Output:best_plan

Ĝ�8, indexed using sets�8 2 I and~̂�9, indexed using sets� 9 2 J be the indicator variables denoting
the wins in the campaigned map (round-1) and the votemandered map (round-2), respectively. Note
that we resort to the set notation (̂G� using�• �) unlike that of the original optimization problem
(i.e.,B̂1

8), as we now have assignments of both initial and target maps, allowing lesser notation.

3.4.2 Incorporating EG into the Fairness Step.Using the de�nition for EG, the di�erence between
wasted votes for each district� 2 I (denoted henceforth byW¹ � � � º) is given by

W¹ � � � º ¹� º =

( 3+ �
� � + �

�
2 • if + �

� ¡ + �
� (� winsº

+ �
� � 3+ �

�
2 • if + �

� Ÿ + �
� (� winsº

(11)

Using this de�nition, we further write the constraint of EG less than a particular constant, say8%
(Stephanopoulos and McGhee 2015).

e�ciency gap of the state =

�
�
�
�
�

Õ

� 2 I

W¹ � � � º ¹� º•

 
Õ

� 2 I

+ �
� ¸ + �

�

! �
�
�
�
�
� 0”08 (12)

Next, we describe the MIP we use to ensure the fairness of the proposed map in round-2, i.e., the
votemandered map. Lettingg� • 8� 2 J denote the di�erence between wasted votes in� 's district,
i.e.,W¹ � � � º ¹� º, we can write:

max
Õ

� 2 I

Ĝ�

B”C”Constraints (6), (7)

+ �
� =

Õ

: 2�

UE�8=8C•:̧ 1�
: 8� 2 I

+ �
� =

Õ

: 2�

UE�8=8C•:̧ 1�
: 8� 2 J

1 � " ¹1 � Ĝ� º � ¹ + �
� � + �

� º � " Ĝ� 8� 2 I (13)

1 � " ¹1 � ~̂� º � ¹ + �
� � + �

� º � " ~̂� 8� 2 J (14)
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0 � � g� ¸

 
3+ �

� � + �
�

2

!

� " ¹1 � ~̂� º 8� 2 J (15)

0 � g� �

 
+ �

� � 3+ �
�

2

!

� " ~̂� 8� 2 J (16)

� 0”08 �
Õ

�

g� •©
­
«

Õ

� 2 J

+ �
� ¸ + �

�
ª
®
¬

� 0”08 (17)

Ĝ� •~̂� 2 f0•1g• 1�
: •g� � 0 8: 2  • � 2 J (18)

Algorithm 1 �nds an optimal solution within a pool of target maps, but one may question
about the probability that a globally optimal solution exists within a pool generated by running
a recombination chain for# steps. However, given the hardness of �nding a globally optimal
solution, it is unlikely that a bound on this probability can be determined. In practice, the algorithm
is computationally e�cient as shown in Section 4 (Theorem 4.3), and the returns diminish as the
size of the pool increases. It is important to note that the primary goal of this paper is to establish
the mechanism of votemandering and study its dependence on various crucial factors that a�ect
redistricting, as opposed to �nding the optimal votemandering strategies.

As the algorithm works given any inputs of the initial map and campaign budget, it establishes
a framework that can be used to test the robustness of any district plan or pool of maps against
votemandering. This framework is used in later sections to compare the e�ects of various state
characteristics and external redistricting conditions on votemandering. An ideal map would have a
lower objective when tested against a standard pool of target maps. The higher the budget required
to votemander, the better the robustness.

4 RESULTS AND ANALYSIS

This section presents the e�cacy and e�ciency of votemandering under various conditions. Using
EG as our fairness measure, we begin by examining the impact of campaigning on votemandering
objective and fairness in Section 4.1. We show that under certain general conditions, votemandering
can always occur. In Section 4.2, we establish the polynomial-time complexity of Algorithm 1. Finally,
in Section 4.3, we experimentally analyze the dependence of various factors on votemandering,
such as the budget of Party� and Party� , compactness, voter turnout, and the concentration index
Moran's I.

4.1 Su�icient Conditions for Votemandering

As a build-up to this question, we analyze the strategy space of party� : it can add new votes via
campaigning in round-1; e�ectively gerrymander to shift votes from a winning (W) district to a
losing (L) district or vice versa. We discuss their key implications on fairness in Lemma 4.1.

Lemma 4.1.The actions of campaigning and vote shifts have an impact on the di�erence between
wasted votes, i.e.,W¹ � � � º, as given in Table 1.

Proof. See Appendix C.1. �

Next, we discuss the total impact on the change in wasted votesW¹ � � � º, and thereby, the
e�ciency gap, as a new district plan gets drawn over the same vote data. As the total number of
votes does not change in this case, this change can be tracked just through a reshu�e of units
into winning and losing districts. For district assignmentI in round-1, the di�erence between the
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Table 1. Change in the di�erence between wasted votes (EG) as new votes are added/shi�ed

Action Impact onW¹ � � � º
1 Wasting an additional vote on a losing district � 3•2
2 Wasting an additional vote on a winning district � 1•2
3 Winning a district� through campaigning ¹3+ �

� ¸ + �
� º•2

4 ShiftGvotes from a winning to a losing district � G
5 ShiftGvotes from a losing to a winning district G

wasted votesW¹ � � � ºI is expressed as:

W¹ � � � ºI = U©
­
«

Õ

� 2 I ¹ , º

3+ �
8=8C•�� + �

8=8C•�

2
ª
®
¬

¸ U©
­
«

Õ

82I ¹ ! º

+ �
8=8C•�� 3+ �

8=8C•�

2
ª
®
¬

= U

 
Õ

� 2 I

+ �
8=8C•�� + �

8=8C•�

2

!

¸ U©
­
«

Õ

82I ¹ , º

+ �
8=8C•��

Õ

� 2 I ¹ ! º

+ �
8=8C•�

ª
®
¬

(19)

whereI¹ , º andI¹ ! º are the sets of winning and losing districts, respectively. Then, after reshuf-
�ing to district assignmentJ in round-2, the change inW (de�ned by � W¹ � � � ºI!J ) and the
�nal W is given as:

� W¹ � � � ºI!J = U©
­
«

Õ

92 J ¹ , º

+ �
8=8C•9�

Õ

92 J ¹ ! º

+ �
8=8C•9

ª
®
¬

� U©
­
«

Õ

82I ¹ , º

+ �
8=8C•8�

Õ

82I ¹ ! º

+ �
8=8C•8

ª
®
¬

W¹ � � � ºJ = W¹ � � � ºI ¸ � W¹ � � � ºI!J ¸ [Any wasted votes through campaign] (20)

To conclude, Table 1 and Eq.(20)show that a campaign budget can be allotted (thereby updating
+ �

8=8C•�•+�
8=8C•�to + �

� •+�
� ) to achieve fairness of a target map, given that the allocation also satis�es

the budget and voter-turnout constraints. Thus, votemandering can potentially include at least two
(interdependent) ways: (1) Fixing planJ and allotting appropriate budget to satisfy the fairness
bound, whilst bene�ting from campaigning in round-1, and (2) Designing a target map withJ
that leads to a higher number of wins in round-2, maintaining fairness. To measure the e�cacy of
votemandering, we de�nevotemandering bonusi.e.,� which measures the gain in the number of
wins after enabling votemandering. For a target plan~� and campaigning resulting with~+ ,

Votemandering bonus� = E¹� 0• ~� º ¸ E¹ ~�•+ 0º � 2E ¹� 0•+0º (21)

Using this de�nition, a positive votemandering bonus would indicate that we have successfully
votemandered. We now characterize the su�cient conditions for successful votemandering using
the second way of improving the objective. Intuitively, we need a target map better than the initial
map, and a baseline voter turnout to allow GOTV e�orts to take place.

Theorem 4.2.For any vote-share distribution and a corresponding fair initial map with assignment
I , the existence of strategies leading to a positive votemandering bonus is guaranteed if

(1) A feasible, contiguous map with assignmentJ exists with a higher number of wins than the
initial map.

(2) The voter turnoutUsatis�es:

U � 1 �

 
2� W¹ � � � ºI!J
Í

� 2 J ¹ , º
Í

92� E�
9

!
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where� W¹ � � � ºI!J is the change in the di�erence between wasted votes from assignment
� to � , andE�

9 are party� 's votes in unit9.

Proof. We prove this by achieving fairness of the map with assignmentJ using a strategic
allocation of budget, thereby establishing the existence of strategies. We primarily satisfy Eq.(20).
We continue with the proof details in Appendix C.2. �

In practice, it is generally much easier to votemander (as we demonstrate in Section 4.3 and
through case studies in Section 6), except under highly speci�c conditions such as near100%
voter turnout and nearly all voters favoring a single party. The �rst way of votemandering, as
discussed above, also allows for a positive bonus to be achieved through an increase in wins in
the �rst round, as long as the voter turnout allows for such campaigning to occur in a fair way. Its
campaigning e�ects on fairness, as translated from the additional number of wins, can be dissolved
in the votemandered map through reorganization of the campaigned map. While this �rst way
is easier to see in practice, its dependence on the speci�city ofJ makes it di�cult to establish
su�cient conditions for votemandering as it demands map making, given an initial assignmentI .
We explore speci�c votemandering strategies using both ways in detail in Section 5.

4.2 E�iciency of Votemandering Heuristic

We now establish the polynomial time complexity of the votemandering heuristic. Recall that it
takes a pool of mapsP as an input, and outputs the target map inP maximizing the votemandering
objective with respect to the given initial map, i.e., it �nds the target map with the maximum
votemandering bonus. Proposition 3.1 con�rms the correctness of Algorithm 1 in its convergence
to the optimal target map. Theorem 4.3 now shows that this may be achieved e�ciently.

Theorem 4.3.LetP be a pool of# candidate target district plans such thatP is a subset of feasible,
but not necessarily fair,=-districts plans. A plan inP that maximizes the votemandering bonus may
be found in poly(# , =) time.

Proof. Following Algorithm 1, see that the only complicated part is the fairness step(10)in the
MIP in Section 3.4.2. We show that each target map can be checked in polynomial time, enabling us
to move through the pool quickly until convergence. We sketch the proof here and provide details
in Appendix C.3.

(1) For each district in round-1, we decompose its space intopiecesthat each belongs to a district
in round-2. For each such piece, we de�ne its capacity = min(its voter-turnout capacity,
budget needed to win the round-2 district it is part of (only if part of a losing district)).

(2) Given party� 's investment and the original vote shares of� and� , we next �nd the win/lose
(, • ! ) status of the districts in the votemandered map and compose a linear program to
�nd the maximum wins in the campaigned map while constraining on the status of the
districts, implemented by the variables for investment in the pieces.

(3) If the ¹, • ! º constraint for district: (in the votemandered map) is tight in the optimal
solution, do: i) mark: 's status as a win and update the fairness of the votemandered map,
ii) add a constraint for allocating the budget needed to win: . We then solve the updated
linear program, and if the objective increases, we repeat all the steps with updated, •!
status and constraints until the objective stops increasing. This converges in polynomial
time since there is a prede�ned number of districts with an! status, bounded above by=.

These three steps su�ce to prove Theorem 4.3. �
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(a) Increasing budget of party A (b) Increasing budget of party B

Fig. 2. Party A's votemandering bonus, with increase in both budgets

4.3 Analysis of factors impacting votemandering

Although the conditions for votemandering may be easily satis�ed in practice, the required budget
to ensure a positive bonus can vary. The e�cacy of votemandering depends on several factors,
including the initial vote share distribution across the state, the initial district assignment plan,
and the available campaign budget for parties� and� . Furthermore, it is in�uenced by various
externally imposed constraints on the redistricting process, such as EG, compactness, the number
of majority-minority districts, proportionality, etc. As a result, we opt for a randomized approach,
i.e., Algorithm 1, for a pool of maps to examine the dependence on these factors and, in turn,
demonstrate the e�cacy of votemandering under various conditions. The pool of plans is randomly
generated using recombination and contains plans that all satisfy the externally imposed constraints.
We �x a randomly generated vote share distribution across a grid with20� 20units such that each
unit 8has a population?8 uniformly chosen between350� 400and vote shares¹E�

8=8C•8•?8• E�
8=8C•8•?8º

between20� 80%for each party. Each feasible map from the pool provides a unit-to-district
assignment, mapping the 400 units to 10 districts, with district populations allowed to deviate1%
from the average district population.

4.3.1 Impact of increasing budget.We present our �rst key result through Figure 2, which tracks
how increasing the campaign budget strengthens the ability to votemander. Recall that the budget
equals the number of votes that can be in�uenced above the baseline voter turnout, with an upper
bound given by total party a�liation shares. Figure 2 plots Party� 's votemandering bonus as the
parties increase their budget uniformly. In experiments for Figure 2a, Party� 's budgetB � is �xed
at 400, and Party� 's budgetB � is varied, whereas for Figure 2b,B � is varied, andB � is �xed
at 400. In both experiments, we plot the majority party� 's votemandering bonus coming from
its strategic investment. Recall that we do not assume any campaigning strategies from Party� .
Given any budget allocation of� , if � has access to the allocation information, then the algorithm
�nds the best strategies for� . Here, we let� invest most straightforwardly, making its budget
investment proportional to each unit's population, allowing fractional investments.

Figure 2a shows a steady increase in the bonus through the means and medians shifting upwards
with the increase inB � . The bonus forB � = 100indicates the objective that can be attained by
accessing Party� 's budget investment information while� puts in a little campaigning e�ort
itself. Note that the increase in bonus in Figure 2a is not linear. Improving the allowed budget has
diminishing returns in the form of objectives. This is expected since the objective, and therefore
the bonus, is capped by the total number of seats available in both rounds.

Most interestingly, the bonus has a counterintuitive relation with increasingB � as shown in
Figure 2b. As opposed to a clear steady increase in 2a, increasingB � does not ensure a steady
decrease in the bonus. Although increasingB � may impact Party� 's chances of winning in the �rst
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(a) Lower compactness (b) Higher compactness

Fig. 3. Party A's votemandering objective with lower and higher compactness bounds

round,� may use this information to create better districts in the second round. This is achieved
by letting Party� win some districts in the votemandered map, only to lose those in the target map
as the campaign e�ects diminish. Because of this trade-o�, the decreasing trend is not obvious:
Party� 's votemandering bonus remains largely una�ected untilB � reaches 500.

4.3.2 Impact of increasing compactness.The metric of compactness is generally not perceived as a
fairness notion and is usually imposed to be in line with the (older) belief of creating districts that
minimize the physical distance between units within a district. The salamander-shaped district in
the �rst gerrymander suggests rejecting freehand-shaped districts and asking for compactness as a
proxy for partisan neutrality (Polsby and Popper 1991). However, compactness is often deemed
orthogonal to fairness measures (Gurnee and Shmoys 2021). Contrary to this belief, we demonstrate
that imposing tighter compactness bounds limits the ability of votemandering, leading to better
(robust) maps in general. We achieve this by comparing votemandering objectives on two separate
pools of maps, generated through recombination: one with looser and one with tighter compactness
constraints. For ease of handling, compactness is expressed through the number of cut edges, as
done in the foundational work on recombination (DeFord et al. 2021). The number of cut edges
is de�ned as the number of edges in a state's unit adjacency graph with endpoints belonging to
di�erent districts. For instance, a20� 20grid graph with each district composed of two adjacent
columns�making 10 districts overall�will have 9 � 20= 180cut edges. For showing the e�ects of
compactness, the �rst pool has the maximum number of cut edges equal to2 � 180= 360, and the
second pool has a bound of0”75� 180= 135cut edges.

The results are given in Figure 3, which show that more compact plans lead to a lower number of
seats achieved through votemandering. Recall Lemma 4.1, which shows that investing in a losing
district is 3 times more bene�cial in achieving fairness, while winning through campaigning marks
the investment as a winning-district speci�c. Then, campaigning in targeted units is usually followed
by their re-assignments to losing districts, as a votemandering strategy to achieve fairness bene�ts.
Compactness limits this scope of targeting units for the campaign and subsequent reassigning,
by disallowing arbitrary shapes. We elaborate more on the intuition behind this phenomenon,
as we discuss the local votemandering strategies in Section 5.3. Note that Figure 3 compares
votemandering objectives, as opposed to bonuses shown in Figure 2, as here two di�erent pools are
used, which also signi�cantly a�ects the distribution of wins in the initial maps, and thereby the
bonuses.

4.3.3 Impact of voter turnout.Intuitively, the ability to votemander is a function of how e�ciently
and thus also, how disproportionately we can allocate budget across the units. The parameterU
captures the natural voter turnout and the selective campaigning by a party strategically adds
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(a)U= 0.5 (b) U= 0.9

Fig. 4. Increase in A's votemandering bonus with voter turnout

Fig. 5. Votemandering bonus with increasing Moran's I

more party votes, bounded above by the natural vote share of that party in every unit. Hence, it is
straightforward to see that an increase inUwould provide less �exibility to votemander, and will
more accurately represent the true vote share, putting less weight on the campaigned votes. We
rigorously show this in e�ect in Figure 4 where we plot the objective with respect to increasingU.
With both the means and medians shifting downwards with increasingU, this demonstrates that
a higher voter turnout supports a better representation of social choice through not only higher
volume and election credibility, but also through disallowing political parties to votemander.

4.3.4 Impact of spatial autocorrelation of voters (Moran's I).One may question if the current
experimental setting of a geographically uniformly spread voter population is reasonable, as we
often see clusters of societies divided across political and geographic lines. In this experiment, we
show that clustering of this data does not have a very signi�cant e�ect on the votemandering bonus.
To demonstrate this, we use a popular spacial auto-correlation metric calledMoran's I(Duchin and
Walch 2021). This is a measure of the overall clustering of the spatial data. For¹E1• ””Ej jº as the
vector of vote shares,�Eas the average vote share,~8 9as a binary variable indicating adjacency of
units 8• 9and. =

Í j j
8•9~8 9as the number of total adjacencies, Moran's I is de�ned as

� =
j j
.

Í j j
8=1

Í j j
9=1~8 9¹E8 � �Eº¹E9 � �Eº
Í  

8=1¹E8 � �Eº2
(22)

Moran's I is usually used to measure the segregation of geospatial data and it varies between
[� 1•1] with -1 indicating anti-segregation, 0 with no segregation, and 1 with extreme segregation.
The randomly generated voter patterns used in Section 4.3.1, 4.3.2, and 4.3.3 produce Moran's I
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